Main Article Content

Abstract

Artificial Neural Networks (ANN) is a computer technology in the field of artificial intelligence that is able to understand complex data patterns. One of ANN's technological capabilities is being able to predict solutions based on training patterns provided during the system learning process. This study aims to apply the signature pattern by applying ANN using the Backpropagation method. Backpropagation method is one of the learning algorithms related to the preparation of weights based on the value of errors in learning. The image will be processed using the Backpropagation method which will be obtained by the introduction. The results introduce 50 signature data samples and 50 signature sample data. The test is carried out using 50 samples, where each sample will be requested once. From the results of the research that has been done it can be concluded that the results obtained from the parameters with a learning rate of 0.5, epoch 100, objectives 1e-5 and momentum 0.9 with the results of 68% system testing.

Keywords

JST Backpropagation Signature

Article Details

References

  1. A. Jumarwanto, R. Hartanto, and D. Prastiyanto, “Aplikasi jaringan saraf tiruan backpropagation untuk memprediksi penyakit THT di Rumah Sakit Mardi Rahayu Kudus,” J. Tek. Elektro, vol. 1, no. 1, p. 11, 2009.
  2. D. Maulana and J. Jondri, “Deteksi Gangguan Jantung Premature Ventricular Contractions Menggunakan Sinyal Elektrokardiogram Dengan Algoritma Backpropagation Dan Algoritma Firefly,” eProceedings Eng., vol. 6, no. 2, 2019.
  3. E. Panggabean and J. R. Sagala, “Analisa Perbandingan Metode Jaringan Syaraf Tiruan Dengan Metode Sistem Pendukung Keputusan Untuk Penerimaan Tenaga Kerja,” J. Inform. Pelita Nusant., vol. 4, no. 1, 2019.
  4. A. Hidayatno and R. Isnanto, “Identifikasi Tanda-Tangan Menggunakan Jaringan Saraf Tiruan Perambatan-Balik (Backpropagation),” J. Teknol., vol. 1, no. 2, pp. 100–106, 2008.
  5. A. Pujiyanta, “Pengenalan Citra Objek Sederhana Dengan Jaringan Saraf Tiruan Metode Perceptron,” J. Inform. Ahmad Dahlan, vol. 3, no. 1, p. 101496, 2009.
  6. S. A. Farhan, J. Raharjo, and N. K. C. Pratiwi, “Identifikasi Wajah Berdasarkan Gender Dan Kelompok Usia Dengan Metode Viola Jones Dan Metode Jaringan Syaraf Tiruan,” eProceedings Eng., vol. 6, no. 2, 2019.
  7. R. N. Putri and D. Setiawan, “Prototipe Jaringan Syaraf Tiruan Untuk Mendeteksi Banjir Menggunakan Metode Backpropagation,” JOISIE (Journal Inf. Syst. Informatics Eng., vol. 1, no. 2, pp. 144–149, 2019.
  8. A. M. Nur and F. Farhurrahman, “Identifikasi Kematangan Buah Mentimun Berbasis Citra Digital Menggunakan Jaringan Syaraf Tiruan Backpropagation,” Infotek J. Inform. dan Teknol., vol. 2, no. 1, pp. 27–33, 2019.
  9. S. Halim and A. M. Wibisono, “Penerapan Jaringan Saraf Tiruan untuk Peramalan,” J. Tek. Ind., vol. 2, no. 2, pp. 106–114, 2000.
  10. R. A. Rizal, S. Gulo, O. D. C. Sihombing, A. Bernandustahi, M. Napitupulu, A. Y. Gultom, and T. J. Siagian, “Analisis Gray Level Co-Occurence Matrix (GLCM) dalam Mengenali Citra Ekspresi Wajah,” 2019.
  11. E. Hartato, D. Sitorus, and A. Wanto, “Analisis Jaringan Saraf Tiruan Untuk Prediksi Luas Panen Biofarmaka di Indonesia,” J. Inform. Semant., vol. 4, no. 1, pp. 49–56, 2018.

Most read articles by the same author(s)